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STRUCTURE OF THE NUCLEON: SPIN OBSERVABLES
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I discuss the spin structure of the nucleon at low photon virtualities in the frame-
work of a Lorentz–invariant formulation of baryon chiral perturbation theory. The
structure functions of doubly virtual Compton scattering are calculated to one–
loop accuracy. The role of the delta and other resonances is analyzed and first
steps towards a covariant effective field theory with spin-3/2 fields are outlined.
As an example, the quark mass expansion of the delta mass is discussed.

1. Introduction

Understanding the spin structure of the nucleon is a central topic of present

nuclear and particle physics activities, for a review see 1. Of particular in-

terest are certain sum rules which connect information at all energy scales,

like e.g. the Gerasimov–Drell–Hearn (GDH) sum rule and its generaliza-

tion to finite photon virtuality or the Burkhardt–Cottingham (BC) sum

rule. Such sum rules are interesting from the theoretical point of view be-

cause they constitute moments of the sought after nucleon spin structure

functions g1 and g2. On the experimental side challenging new meson pro-

duction experiments using real or virtual photons play an important role

since only recently it has become possible to work with polarized beams and

polarized targets, thus offering the possibility of mapping out the nucleons’

spin structure encoded in these two functions, which can be formulated

on a purely partonic (high energy regime) or hadronic level (low energy

regime). In both these extreme cases, systematic and controlled theoreti-

cal calculations can be performed. The region of intermediate momentum

transfer is accessible using quark/resonance models or can be investigated

using dispersion relations. In fact, one of the final goals of many of these

investigations is to obtain an understanding of how in QCD this transition
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from the non–perturbative to the perturbative regime takes place, guided

by the precise experimental mapping of spin–dependent observables from

low momentum transfer to the multi–GeV region, as it is one of the main

thrusts of the research carried out e.g. at Jefferson Laboratory.

In this talk, I focus on a theoretical investigation of the nucleon’s spin struc-

ture in the non-perturbative regime of QCD, utilizing chiral perturbation

theory (CHPT) to analyze the structure of the nucleon at low energies.

CHPT is based on the spontaneous and explicit chiral symmetry breaking

QCD is supposed to undergo (for a general review, see e.g. 2). By now it is

well established that the pion cloud plays an important role in understand-

ing the nucleon’s properties in the non–perturbative regime of QCD, and

many processes have been analyzed using chiral perturbation theory. Some

recent work in various versions/extensions of baryon CHPT pertinent to

the topics discussed here can be found e.g. in Refs. 3,4,5,6,7,8.

2. Doubly virtual Compton scattering - formalism

Consider spin–dependent doubly virtual Compton scattering (V2CS) off

nucleons (neutrons or protons) in forward direction, that is the reaction

γ?(q, ε) + N(p, s) → γ?(q, ε′) + N(p, s′), with q (p) the virtual photon (nu-

cleon) four–momentum, s (s′) the nucleon spin (polarization) and ε (ε′) the

polarization four–vector of the incoming (outgoing) photon. It is common

to express the spin amplitude of V2CS, T [µν](p, q, s), in terms of two struc-

ture functions, called S1(ν, Q2) and S2(ν, Q2), via

T [µν] = − i

2
εµναβqα

{

sβ S1(ν, Q2) + [p · q sβ − s · q pβ ]
S2(ν, Q2)

m2

}

, (1)

where sµ denotes a spin-polarization four-vector, m is the nucleon mass,

εµναβ the totally antisymmetric Levi–Civita tensor, ν = p · q/m the energy

transfer and Q2 = −q2 ≥ 0 the (negative of the) photon virtuality. Note

that while S1(ν, Q2) is even under crossing ν ↔ −ν, the structure function

S2(ν, Q2) is odd. The Compton amplitudes S1,2(ν, Q2) are amenable to

a chiral expansion. We remark that in what follows, we will mostly be

concerned with the reduced amplitudes

S̄i(ν, Q2) = Si(ν, Q2) − Sel
i (ν, Q2) , (2)

i.e. the Compton amplitudes with the contribution from the elastic inter-

mediate state subtracted. More precisely, these are the contributions from

the single nucleon exchange (pole) terms with the corresponding vertices

given in terms of the electromagnetic form factors. Only the non-pole parts
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of the corresponding diagrams contribute to the nucleon spin structure as

discussed in more detail below. The relation of V2CS to inelastic electro-

production allows to derive sum rules and moments thereof, like the GDH

sum rule, its generalization to finite photon virtuality (which is not unique)

or the BC sum rule. For a general discussion of such sum rules and related

moments, see e.g. 9. All these sum rules and their moments can be written

in terms of S1(ν, Q2), S2(ν, Q2) using the following dispersion relations 5,6

S1(ν, Q2) = 4e2

∫

∞

Q2/2m

dν′ν′G1(ν
′, Q2)

ν′2 − ν2
,

νS2(ν, Q2) = 4e2

∫

∞

Q2/2m

dν′ν2G2(ν
′, Q2)

ν′2 − ν2
. (3)

where use has been made of the optical theorem,

Im Si(ν, Q2) = 2π Gi(ν, Q2) , (i = 1, 2) . (4)

Here, G1 = g1/(mν) and G2 = g2/ν2 are the standard spin-dependent

structure functions of deep inelastic scattering. Expanding the structure

functions at low energies ν, that is around ν = 0, one obtains the desired

set of sum rules. One example is

S̄
(0)
1 (0, Q2) = 4e2

∫

∞

ν0

dν′G1(ν
′, Q2)

ν′
=

4e2

m2
I1(Q

2) . (5)

Note that the often used first moment Γ1(Q
2) is related to I1(Q

2) via

Γ1(Q
2) =

Q2

2m2
I1(Q

2) . (6)

3. Chiral expansion of the structure functions

Our calculations are based on an effective chiral pion–nucleon Lagrangian

in the presence of external sources (like e.g. photons) supplemented by

a power counting in terms of quark (meson) masses and small external

momenta. Its generic form consists of a string of terms with increasing

chiral dimension,

Leff = L(1)
πN + L(2)

πN + L(3)
πN + L(4)

πN + L(2)
ππ + L(4)

ππ + . . . . (7)

The superscript denotes the power in the genuine small parameter q (denot-

ing pion masses and/or external momenta). A complete one–loop (fourth

order) calculation must include all tree level graphs with insertions from

all terms given in Eq. (7) and loop graphs with at most one insertion from

L(2)
πN . The complete Lagrangian to this order is given in 12. For various
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Figure 1. Left: Third order diagrams in Lorentz-invariant baryon CHPT. Soild, dashed
and wiggly lines denote nucleons, pions and photons, in order. Right: Fourth order
diagrams with exactly one anomalous magnetic moment insertion (filled circle).

reasons (convergence of the p/m expansion in the spin sector, etc, see 10) we

utilize a Lorentz-invariant formulation of baryon CHPT as formulated in13.

We note that for the case under consideration the only appearing dimension

two low–energy constants (LECs), called c6 and c7
2, can be fixed from the

anomalous magnetic moment of the proton and of the neutron. Note that

there are no contributions from L(3,4)
πN for the observables considered here.

It is important to work out the complete one-loop amplitudes consisting

of third and fourth order contributions since the numerically large values

of the LECs c6,7 enhance the fourth order terms considerably. Within this

approach, we have calculated the reduced structure functions S̄
(p,n)
1,2 (0, Q2),

generically called S. The chiral expansion of S takes the form

S̄ = S̄tree + S̄ loop . (8)

The corresponding third and fourth order one-loop diagrams are shown in

Fig. 1. In our case, the tree level contribution stems from the remainder of

the Born graphs which lead to the following amplitudes

TBorn =
C(Q2)

s − m2
+ (s → u) + R , (9)

with s = (p + q)2, u = (p − q)2, C(Q2) can be expressed in terms of the

nucleon electromagnetic form factors and R denotes the non–pole (poly-
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nomial) remainder from the Born diagrams. Only this latter contribution

survives the subtraction of the contribution from the elastic intermediate

state.

4. Modeling resonance contributions

It is well-known that the excitation of the ∆(1232) plays a significant role in

the spin sector of the nucleon. One therefore would like to include the delta

as a dynamical degree of freedom in the effective Lagrangian. An effective

field theory formulation for the relativistic pion–nucleon–delta system is

only emerging, as discussed in Sect. 6. Therefore, to get an estimate of

the contribution of the ∆-resonance to the various spin structure functions,

in 11 we calculated relativistic Born graphs. These are obtained using

the standard relativistic spin-3/2 propagator and the ∆ → Nγ transition

operator. The latter depends on two off-shell parameters X , Y and two

transition strengths g1 and g2, quantities which are not so well known. We

stress that in an effective field theory approach such a dependence on off–

shell parameters would be lumped into higher order operators. Bounds on

X, Y, g1 and g2 have been given in Ref. 14: −0.8 ≤ X, Y ≤ 0.4, 4 ≤ g1 ≤ 5

and 4.5 ≤ g2 ≤ 9.5. Here we constrain g1 to its large Nc relation, g1 =

3(1 + κp − κn)/2
√

2 = 5.0 and use two sets of parameters, X = Y = 0.4,

g2 = 4.5, and X = Y = −0.8, g2 = 9.5, respectively. We note that

these bounds are very conservative, a more precise determination based on

a combined reanalysis of spin–independent Compton scattering and pion

electroproduction based on covariant baryon CHPT would certainly lead

to more stringent bounds. Of course, there are also smaller contributions

from higher baryon resonances, but we do not include them in this work.

A less pronounced though important resonance contribution is related to

the vector mesons. Again, a systematic EFT prescription how to include

these degrees of freedom is only just emerging 15,16. We adopt here the pro-

cedure advocated in Ref.17. In the pion–nucleon EFT, any vector meson

contribution is hidden in the values of the various LECs. However, the mo-

mentum dependence of the vector meson propagator is only build up slowly

by adding terms of ever increasing chiral dimension. This can be done much

more efficiently by including vector mesons in a chirally symmetric manner

and retaining the corresponding dimension two counterterms, so that the
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Figure 2. Left: The integral IA(Q2) (see Ref. 9) for the neutron in units of µb. The solid

line gives the fourth order result, the dashed lines represent the theoretical uncertainty
due to variation in the delta parameters. Dot-dashed line: delta parameters are adjusted
to reproduce the data. For comparison, the HBCHPT result is depicted by the dotted
line. The data are from Ref. 22. Right: The second moment dn

2
in comparison to the

data of Ref.23.

LECs c6, c7 are effectively replaced by 17

c6 → ĉ6 + gρNN κρ
FρMρ

M2
ρ − t

, (10)

c7 → ĉ7 −
gρNN κρ

2

FρMρ

M2
ρ − t

+
gωNN κω

2

FωMω

M2
ω − t

+
gφNN κφ

2

FφMφ

M2
φ − t

.

Here, t is the invariant four–momentum squared and the remainders ĉ6, ĉ7

account for physics not related to vector mesons. They have been deter-

mined from fitting the nucleons electromagnetic radii 17. All other param-

eters appearing in Eqs.(11) can be taken form the dispersion–theoretical

analysis of Refs. 18.

5. Results and discussion

Here I discuss a few selected results, for more details the reader is referred

to the papers 10,11 and the talks by S. Choi 19, A. Deur 20 and G. Dodge
21 given at this conference. The chiral expansion of the structure functions

and their moments is discussed in 10, in particular also the comparison to

the heavy baryon results obtained e.g. in Refs.5,6. The inclusion of reso-

nance contributions as described in the preceding section allows for a better

comparison with the data, as discussed in detail in Ref.11. Two typical re-

sults are shown in Fig. 2. In the left panel, the prediction of the integral

IA(Q2) (as defined by Drechsel et al. 9) for the neutron is given in com-
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parison to the data from JLab 22. It is evident that for photon virtualities

above 0.15 GeV2, a pure chiral description at one-loop is insufficient. In

the right panel, the recently measured moment d2 for the neutron is shown,

d2(Q
2) =

∫ 1

0

dx x2
[

g2(x, Q2) − gWW
2 (x, Q2)

]

, (11)

which measures higher twist contributions to the spin structure function

g2 (i.e. the deviation from the Wandzura-Wilczek relation). Interestingly,

these data can not be described even when the delta and vector mesons

are included already at very small photon virtualities (such a result is also

found in the heavy baryon scheme, see Choi’s talk and Ref.25).

6. Lorentz-invariant baryon CHPT with spin-2/3 fields

To overcome the model-dependent calculation of the delta contribution to

the various sum rules and moments, one must extend the covariant effec-

tive field theory method to spin-3/2 fields. As in the corresponding heavy

fermion scheme, the so-called “small scale expansion” of Ref.26, one treats

the nucleon-delta splitting ∆ ≡ m∆−mN as an additional small parameters

(the others being external momenta and the pion mass). Every observable

can then be expanded in the small scale ε, where ε collects all small pa-

rameters. However, one has to assure that the so formulated theory fulfills

decoupling (see e.g. the discussion in Ref.27). Furthermore, since ∆ stays

finite in the chiral limit of vanishing up and down quark masses, this is

a phenomenological extension of chiral QCD, but based on a consistent

power counting. In Ref.24, a Lorentz–invariant formulation of baryon chi-

ral perturbation theory including spin-3/2 fields was presented. Particular

attention has to be paid to the projection on the spin-3/2 components of

the delta fields. To make this point more clear, consider the standard delta

propagator in d space-time dimensions,

G∆
µν (p) = − 6p + m∆

p2 − m2
∆

P 3/2
µν + spin − 1/2 components , (12)

P 3/2
µν = gµν − 1

d − 1
γµγν − 1

(d − 1) p2

(

6pγµpν + pµγν 6p
)

− d − 4

d − 1

pµpν

p2
.

Note the infrared singular pieces ∼ 1/p2 appearing in the spin-projected

parts of the propagator, which require a special treatment. In fact, in Ref.24

the prescription of Becher and Leutwyler to generate the IR singular part

from a one-loop integral was extended to deal with such new structures that

do not appear in the pion–nucleon EFT. For details, I refer to Ref.24. Also,
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we remark that the spin-1/2 pieces do not propagate and thus one is able

to absorb their contribution in purely polynomial terms (which amounts to

a redefinition of certain low-energy constants in the effective field theory).

This was shown for the explicit case of the nucleon mass in Ref.24.

As a definite example, consider the quark mass expansion of the nucleon

and the delta mass to third order in ε,

mN = m0 − 4c1M
2
π + g2

AJa ,

m∆ = m∆
0 − 4c∆

1 M2
π + c2

AJb + h2
AJc , (13)

where the loop integral Ji corresponds to the diagram i (i = a, b, c) in

Fig. 3. Here, gA, ca and hA are the leading nucleon, N∆ and delta axial

a b c
Figure 3. Lowest order self-energy diagrams. Solid/double/dahed lines denote nucleons,
deltas and pions, in order.

coupling constants, we use gA = 1.267, cA = 1.575 from the imaginary

part of the complex delta-pole and hA = 9gA/5 from SU(6). c1 and c∆
1 are

the LECs related to the leading explicit chiral symmetry-breaking terms in

the effective Lagrangian. We have c1 ' −1 GeV−1 from various analyses

of pion-nucleon scattering in CHPT 28 and c∆
1 = c1 if one assumes SU(6)

for simplicity. Furthermore, m∆
0 = m0 + ∆0, with m0 = 0.88 GeV 29 and

∆0 = 0.271 GeV from the complex delta-pole. In Fig. 4 the (preliminary)

results on the pion mass expansion of mN and m∆ to O(ε3) are shown.

The bands are obtained by varying the scale of dimensional regularization

in a fairly large interval (note that in IR baryon CHPT it is natural to

set this scale equal to the mass of the heavy fermion). The third order

results are clearly only useful for pion masses below 400 MeV, a fourth

order calculation is needed to extend this range (see also the discussion in
29). A more detailed account of this work with many other applications

and a comparison to the early work of Ref.30 on the quark mass expansion

of the N and delta masses will be given in Ref.31.

7. Summary and outlook

This talk was concerned with the investigation of sum rules and their mo-

ments obtained from doubly virtual Compton scattering at low photon vir-



November 16, 2004 17:3 Proceedings Trim Size: 9in x 6in ugmdgh

9

0 0.2 0.4 0.6
Mπ [GeV]

−1

−0.5

0

0.5

1

1.5

2

m
N
 &

 m
∆ 

[G
eV

]

mN

m∆

Figure 4. Pion mass expansion of the nucleon (solid lines) and the delta mass (dot-
dashed lines) compared to lattice results from UKQCD and CP-PACS.

tualities, which is studied experimentally in great detail at Jefferson Lab.

The calculations presented are based on a Lorentz-invariant formulation

of baryon CHPT. The spin structure functions at fourth order are given

free of unknown LECs. In addition, the resonance contribution from the

delta and from vector mesons as described in sect. 4. As a new devel-

opment, a Lorentz-invariant formulation for spin-3/2 fields was discussed,

which should ultimately be applied to the various observables obtained from

V2CS. Also, precise data at very low photon virtualities (Q2 ≤ 0.1 GeV2)

are required to obtained more stringent tests of the chiral structure of QCD.
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